Canonical Correlation Analysis for Analyzing Sequences of Medical Billing Codes

We propose using canonical correlation analysis (CCA) to generate features from sequences of medical billing codes. Applying this novel use of CCA to a database of medical billing codes for patients with diverticulitis, we first demonstrate that the CCA embeddings capture meaningful relationships among the codes. We then generate features from these embeddings and establish their usefulness in predicting future elective surgery for diverticulitis, an important marker in efforts for reducing costs in healthcare.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here