Calibration-Aware Bayesian Learning

12 May 2023  ·  Jiayi Huang, Sangwoo Park, Osvaldo Simeone ·

Deep learning models, including modern systems like large language models, are well known to offer unreliable estimates of the uncertainty of their decisions. In order to improve the quality of the confidence levels, also known as calibration, of a model, common approaches entail the addition of either data-dependent or data-independent regularization terms to the training loss. Data-dependent regularizers have been recently introduced in the context of conventional frequentist learning to penalize deviations between confidence and accuracy. In contrast, data-independent regularizers are at the core of Bayesian learning, enforcing adherence of the variational distribution in the model parameter space to a prior density. The former approach is unable to quantify epistemic uncertainty, while the latter is severely affected by model misspecification. In light of the limitations of both methods, this paper proposes an integrated framework, referred to as calibration-aware Bayesian neural networks (CA-BNNs), that applies both regularizers while optimizing over a variational distribution as in Bayesian learning. Numerical results validate the advantages of the proposed approach in terms of expected calibration error (ECE) and reliability diagrams.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here