Calibrating Bayesian UNet++ for Sub-Seasonal Forecasting

25 Mar 2024  ·  Busra Asan, Abdullah Akgül, Alper Unal, Melih Kandemir, Gozde Unal ·

Seasonal forecasting is a crucial task when it comes to detecting the extreme heat and colds that occur due to climate change. Confidence in the predictions should be reliable since a small increase in the temperatures in a year has a big impact on the world. Calibration of the neural networks provides a way to ensure our confidence in the predictions. However, calibrating regression models is an under-researched topic, especially in forecasters. We calibrate a UNet++ based architecture, which was shown to outperform physics-based models in temperature anomalies. We show that with a slight trade-off between prediction error and calibration error, it is possible to get more reliable and sharper forecasts. We believe that calibration should be an important part of safety-critical machine learning applications such as weather forecasters.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods