Calculus on MDPs: Potential Shaping as a Gradient

20 Aug 2022  ·  Erik Jenner, Herke van Hoof, Adam Gleave ·

In reinforcement learning, different reward functions can be equivalent in terms of the optimal policies they induce. A particularly well-known and important example is potential shaping, a class of functions that can be added to any reward function without changing the optimal policy set under arbitrary transition dynamics. Potential shaping is conceptually similar to potentials, conservative vector fields and gauge transformations in math and physics, but this connection has not previously been formally explored. We develop a formalism for discrete calculus on graphs that abstract a Markov Decision Process, and show how potential shaping can be formally interpreted as a gradient within this framework. This allows us to strengthen results from Ng et al. (1999) describing conditions under which potential shaping is the only additive reward transformation to always preserve optimal policies. As an additional application of our formalism, we define a rule for picking a single unique reward function from each potential shaping equivalence class.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here