Caching-Augmented Lifelong Multi-Agent Path Finding

20 Mar 2024  ·  Yimin Tang, Zhenghong Yu, Yi Zheng, T. K. Satish Kumar, Jiaoyang Li, Sven Koenig ·

Multi-Agent Path Finding (MAPF), which involves finding collision-free paths for multiple robots, is crucial in various applications. Lifelong MAPF, where targets are reassigned to agents as soon as they complete their initial targets, offers a more accurate approximation of real-world warehouse planning. In this paper, we present a novel mechanism named Caching-Augmented Lifelong MAPF (CAL-MAPF), designed to improve the performance of Lifelong MAPF. We have developed a new type of map grid called cache for temporary item storage and replacement, and created a locking mechanism to improve the planning solution's stability. A task assigner (TA) is designed for CAL-MAPF to allocate target locations to agents and control agent status in different situations. CAL-MAPF has been evaluated using various cache replacement policies and input task distributions. We have identified three main factors significantly impacting CAL-MAPF performance through experimentation: suitable input task distribution, high cache hit rate, and smooth traffic. In general, CAL-MAPF has demonstrated potential for performance improvements in certain task distributions, map and agent configurations.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here