Byzantine-Resilient Decentralized Multi-Armed Bandits

11 Oct 2023  ·  Jingxuan Zhu, Alec Koppel, Alvaro Velasquez, Ji Liu ·

In decentralized cooperative multi-armed bandits (MAB), each agent observes a distinct stream of rewards, and seeks to exchange information with others to select a sequence of arms so as to minimize its regret. Agents in the cooperative setting can outperform a single agent running a MAB method such as Upper-Confidence Bound (UCB) independently. In this work, we study how to recover such salient behavior when an unknown fraction of the agents can be Byzantine, that is, communicate arbitrarily wrong information in the form of reward mean-estimates or confidence sets. This framework can be used to model attackers in computer networks, instigators of offensive content into recommender systems, or manipulators of financial markets. Our key contribution is the development of a fully decentralized resilient upper confidence bound (UCB) algorithm that fuses an information mixing step among agents with a truncation of inconsistent and extreme values. This truncation step enables us to establish that the performance of each normal agent is no worse than the classic single-agent UCB1 algorithm in terms of regret, and more importantly, the cumulative regret of all normal agents is strictly better than the non-cooperative case, provided that each agent has at least 3f+1 neighbors where f is the maximum possible Byzantine agents in each agent's neighborhood. Extensions to time-varying neighbor graphs, and minimax lower bounds are further established on the achievable regret. Experiments corroborate the merits of this framework in practice.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here