Break it, Imitate it, Fix it: Robustness by Generating Human-Like Attacks

25 Oct 2023  ·  Aradhana Sinha, Ananth Balashankar, Ahmad Beirami, Thi Avrahami, Jilin Chen, Alex Beutel ·

Real-world natural language processing systems need to be robust to human adversaries. Collecting examples of human adversaries for training is an effective but expensive solution. On the other hand, training on synthetic attacks with small perturbations - such as word-substitution - does not actually improve robustness to human adversaries. In this paper, we propose an adversarial training framework that uses limited human adversarial examples to generate more useful adversarial examples at scale. We demonstrate the advantages of this system on the ANLI and hate speech detection benchmark datasets - both collected via an iterative, adversarial human-and-model-in-the-loop procedure. Compared to training only on observed human attacks, also training on our synthetic adversarial examples improves model robustness to future rounds. In ANLI, we see accuracy gains on the current set of attacks (44.1%$\,\to\,$50.1%) and on two future unseen rounds of human generated attacks (32.5%$\,\to\,$43.4%, and 29.4%$\,\to\,$40.2%). In hate speech detection, we see AUC gains on current attacks (0.76 $\to$ 0.84) and a future round (0.77 $\to$ 0.79). Attacks from methods that do not learn the distribution of existing human adversaries, meanwhile, degrade robustness.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here