Black-box adversarial attacks using Evolution Strategies

30 Apr 2021  ·  Hao Qiu, Leonardo Lucio Custode, Giovanni Iacca ·

In the last decade, deep neural networks have proven to be very powerful in computer vision tasks, starting a revolution in the computer vision and machine learning fields. However, deep neural networks, usually, are not robust to perturbations of the input data. In fact, several studies showed that slightly changing the content of the images can cause a dramatic decrease in the accuracy of the attacked neural network. Several methods able to generate adversarial samples make use of gradients, which usually are not available to an attacker in real-world scenarios. As opposed to this class of attacks, another class of adversarial attacks, called black-box adversarial attacks, emerged, which does not make use of information on the gradients, being more suitable for real-world attack scenarios. In this work, we compare three well-known evolution strategies on the generation of black-box adversarial attacks for image classification tasks. While our results show that the attacked neural networks can be, in most cases, easily fooled by all the algorithms under comparison, they also show that some black-box optimization algorithms may be better in "harder" setups, both in terms of attack success rate and efficiency (i.e., number of queries).

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here