High-parallelism Inception-like Spiking Neural Networks for Unsupervised Feature Learning

2 Dec 2019  ·  Mingyuan Meng, Xingyu Yang, Lei Bi, Jinman Kim, Shanlin Xiao, Zhiyi Yu ·

Spiking Neural Networks (SNNs) are brain-inspired, event-driven machine learning algorithms that have been widely recognized in producing ultra-high-energy-efficient hardware. Among existing SNNs, unsupervised SNNs based on synaptic plasticity, especially Spike-Timing-Dependent Plasticity (STDP), are considered to have great potential in imitating the learning process of the biological brain. Nevertheless, the existing STDP-based SNNs have limitations in constrained learning capability and/or slow learning speed. Most STDP-based SNNs adopted a slow-learning Fully-Connected (FC) architecture and used a sub-optimal vote-based scheme for spike decoding. In this paper, we overcome these limitations with: 1) a design of high-parallelism network architecture, inspired by the Inception module in Artificial Neural Networks (ANNs); 2) use of a Vote-for-All (VFA) decoding layer as a replacement to the standard vote-based spike decoding scheme, to reduce the information loss in spike decoding and, 3) a proposed adaptive repolarization (resetting) mechanism that accelerates SNNs' learning by enhancing spiking activities. Our experimental results on two established benchmark datasets (MNIST/EMNIST) show that our network architecture resulted in superior performance compared to the widely used FC architecture and a more advanced Locally-Connected (LC) architecture, and that our SNN achieved competitive results with state-of-the-art unsupervised SNNs (95.64%/80.11% accuracy on the MNIST/EMNISE dataset) while having superior learning efficiency and robustness against hardware damage. Our SNN achieved great classification accuracy with only hundreds of training iterations, and random destruction of large numbers of synapses or neurons only led to negligible performance degradation.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods