Binarization Methods for Motor-Imagery Brain-Computer Interface Classification

14 Oct 2020  ·  Michael Hersche, Luca Benini, Abbas Rahimi ·

Successful motor-imagery brain-computer interface (MI-BCI) algorithms either extract a large number of handcrafted features and train a classifier, or combine feature extraction and classification within deep convolutional neural networks (CNNs). Both approaches typically result in a set of real-valued weights, that pose challenges when targeting real-time execution on tightly resource-constrained devices. We propose methods for each of these approaches that allow transforming real-valued weights to binary numbers for efficient inference. Our first method, based on sparse bipolar random projection, projects a large number of real-valued Riemannian covariance features to a binary space, where a linear SVM classifier can be learned with binary weights too. By tuning the dimension of the binary embedding, we achieve almost the same accuracy in 4-class MI ($\leq$1.27% lower) compared to models with float16 weights, yet delivering a more compact model with simpler operations to execute. Second, we propose to use memory-augmented neural networks (MANNs) for MI-BCI such that the augmented memory is binarized. Our method replaces the fully connected layer of CNNs with a binary augmented memory using bipolar random projection, or learned projection. Our experimental results on EEGNet, an already compact CNN for MI-BCI, show that it can be compressed by 1.28x at iso-accuracy using the random projection. On the other hand, using the learned projection provides 3.89% higher accuracy but increases the memory size by 28.10x.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods