Bilinear Parameterization for Non-Separable Singular Value Penalties

Low rank inducing penalties have been proven to successfully uncover fundamental structures considered in computer vision and machine learning; however, such methods generally lead to non-convex optimization problems. Since the resulting objective is non-convex one often resorts to using standard splitting schemes such as Alternating Direction Methods of Multipliers (ADMM), or other subgradient methods, which exhibit slow convergence in the neighbourhood of a local minimum. We propose a method using second order methods, in particular the variable Projection method (VarPro), by replacing the non-convex penalties with a surrogate capable of converting the original objectives to differentiable equivalents. In this way we benefit from faster convergence. The bilinear framework is compatible with a large family of regularizers, and we demonstrate the benefits of our approach on real datasets for rigid and non-rigid structure from motion. The qualitative difference in reconstructions show that many popular non-convex objectives enjoy an advantage in transitioning to the proposed framework.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here