Bias Mitigation in Fine-tuning Pre-trained Models for Enhanced Fairness and Efficiency

1 Mar 2024  ·  Yixuan Zhang, Feng Zhou ·

Fine-tuning pre-trained models is a widely employed technique in numerous real-world applications. However, fine-tuning these models on new tasks can lead to unfair outcomes. This is due to the absence of generalization guarantees for fairness properties, regardless of whether the original pre-trained model was developed with fairness considerations. To tackle this issue, we introduce an efficient and robust fine-tuning framework specifically designed to mitigate biases in new tasks. Our empirical analysis shows that the parameters in the pre-trained model that affect predictions for different demographic groups are different, so based on this observation, we employ a transfer learning strategy that neutralizes the importance of these influential weights, determined using Fisher information across demographic groups. Additionally, we integrate this weight importance neutralization strategy with a matrix factorization technique, which provides a low-rank approximation of the weight matrix using fewer parameters, reducing the computational demands. Experiments on multiple pre-trained models and new tasks demonstrate the effectiveness of our method.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here