Bias-Compensated Normalized Maximum Correntropy Criterion Algorithm for System Identification with Noisy Input

23 Nov 2017  ·  Wentao Ma, Dongqiao Zheng, Yuanhao Li, ZhiYu Zhang, Badong Chen ·

This paper proposed a bias-compensated normalized maximum correntropy criterion (BCNMCC) algorithm charactered by its low steady-state misalignment for system identification with noisy input in an impulsive output noise environment. The normalized maximum correntropy criterion (NMCC) is derived from a correntropy based cost function, which is rather robust with respect to impulsive noises. To deal with the noisy input, we introduce a bias-compensated vector (BCV) to the NMCC algorithm, and then an unbiasedness criterion and some reasonable assumptions are used to compute the BCV. Taking advantage of the BCV, the bias caused by the input noise can be effectively suppressed. System identification simulation results demonstrate that the proposed BCNMCC algorithm can outperform other related algorithms with noisy input especially in an impulsive output noise environment.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here