BFpack: Flexible Bayes Factor Testing of Scientific Theories in R

18 Nov 2019  ·  Joris Mulder, Xin Gu, Anton Olsson-Collentine, Andrew Tomarken, Florian Böing-Messing, Herbert Hoijtink, Marlyne Meijerink, Donald R. Williams, Janosch Menke, Jean-Paul Fox, Yves Rosseel, Eric-Jan Wagenmakers, Caspar van Lissa ·

There has been a tremendous methodological development of Bayes factors for hypothesis testing in the social and behavioral sciences, and related fields. This development is due to the flexibility of the Bayes factor for testing multiple hypotheses simultaneously, the ability to test complex hypotheses involving equality as well as order constraints on the parameters of interest, and the interpretability of the outcome as the weight of evidence provided by the data in support of competing scientific theories. The available software tools for Bayesian hypothesis testing are still limited however. In this paper we present a new R-package called BFpack that contains functions for Bayes factor hypothesis testing for the many common testing problems. The software includes novel tools (i) for Bayesian exploratory testing (null vs positive vs negative effects), (ii) for Bayesian confirmatory testing (competing hypotheses with equality and/or order constraints), (iii) for common statistical analyses, such as linear regression, generalized linear models, (multivariate) analysis of (co)variance, correlation analysis, and random intercept models, (iv) using default priors, and (v) while allowing data to contain missing observations that are missing at random.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper