Best of Both Worlds Guarantees for Smoothed Online Quadratic Optimization

31 Oct 2023  ·  Neelkamal Bhuyan, Debankur Mukherjee, Adam Wierman ·

We study the smoothed online quadratic optimization (SOQO) problem where, at each round $t$, a player plays an action $x_t$ in response to a quadratic hitting cost and an additional squared $\ell_2$-norm cost for switching actions. This problem class has strong connections to a wide range of application domains including smart grid management, adaptive control, and data center management, where switching-efficient algorithms are highly sought after. We study the SOQO problem in both adversarial and stochastic settings, and in this process, perform the first stochastic analysis of this class of problems. We provide the online optimal algorithm when the minimizers of the hitting cost function evolve as a general stochastic process, which, for the case of martingale process, takes the form of a distribution-agnostic dynamic interpolation algorithm (LAI). Next, we present the stochastic-adversarial trade-off by proving an $\Omega(T)$ expected regret for the adversarial optimal algorithm in the literature (ROBD) with respect to LAI and, a sub-optimal competitive ratio for LAI in the adversarial setting. Finally, we present a best-of-both-worlds algorithm that obtains a robust adversarial performance while simultaneously achieving a near-optimal stochastic performance.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here