Paper

Benchmarking optimality of time series classification methods in distinguishing diffusions

Statistical optimality benchmarking is crucial for analyzing and designing time series classification (TSC) algorithms. This study proposes to benchmark the optimality of TSC algorithms in distinguishing diffusion processes by the likelihood ratio test (LRT). The LRT is an optimal classifier by the Neyman-Pearson lemma. The LRT benchmarks are computationally efficient because the LRT does not need training, and the diffusion processes can be efficiently simulated and are flexible to reflect the specific features of real-world applications. We demonstrate the benchmarking with three widely-used TSC algorithms: random forest, ResNet, and ROCKET. These algorithms can achieve the LRT optimality for univariate time series and multivariate Gaussian processes. However, these model-agnostic algorithms are suboptimal in classifying high-dimensional nonlinear multivariate time series. Additionally, the LRT benchmark provides tools to analyze the dependence of classification accuracy on the time length, dimension, temporal sampling frequency, and randomness of the time series.

Results in Papers With Code
(↓ scroll down to see all results)