Bayesian Cycle-Consistent Generative Adversarial Networks via Marginalizing Latent Sampling

19 Nov 2018 Haoran You Yu Cheng Tianheng Cheng Chunliang Li Pan Zhou

Recent techniques built on Generative Adversarial Networks (GANs), such as Cycle-Consistent GANs, are able to learn mappings among different domains built from unpaired datasets, through min-max optimization games between generators and discriminators. However, it remains challenging to stabilize the training process and thus cyclic models fall into mode collapse accompanied by the success of discriminator... (read more)

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
Batch Normalization
Normalization
Residual Connection
Skip Connections
PatchGAN
Discriminators
ReLU
Activation Functions
Tanh Activation
Activation Functions
Residual Block
Skip Connection Blocks
Instance Normalization
Normalization
Leaky ReLU
Activation Functions
Sigmoid Activation
Activation Functions
GAN Least Squares Loss
Loss Functions
Cycle Consistency Loss
Loss Functions
CycleGAN
Generative Models
Convolution
Convolutions
GAN
Generative Models