Batch Value-function Approximation with Only Realizability

11 Aug 2020  ·  Tengyang Xie, Nan Jiang ·

We make progress in a long-standing problem of batch reinforcement learning (RL): learning $Q^\star$ from an exploratory and polynomial-sized dataset, using a realizable and otherwise arbitrary function class. In fact, all existing algorithms demand function-approximation assumptions stronger than realizability, and the mounting negative evidence has led to a conjecture that sample-efficient learning is impossible in this setting (Chen and Jiang, 2019). Our algorithm, BVFT, breaks the hardness conjecture (albeit under a stronger notion of exploratory data) via a tournament procedure that reduces the learning problem to pairwise comparison, and solves the latter with the help of a state-action partition constructed from the compared functions. We also discuss how BVFT can be applied to model selection among other extensions and open problems.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here