Balanced Marginal and Joint Distributional Learning via Mixture Cramer-Wold Distance

6 Dec 2023  ·  SeungHwan An, Sungchul Hong, Jong-June Jeon ·

In the process of training a generative model, it becomes essential to measure the discrepancy between two high-dimensional probability distributions: the generative distribution and the ground-truth distribution of the observed dataset. Recently, there has been growing interest in an approach that involves slicing high-dimensional distributions, with the Cramer-Wold distance emerging as a promising method. However, we have identified that the Cramer-Wold distance primarily focuses on joint distributional learning, whereas understanding marginal distributional patterns is crucial for effective synthetic data generation. In this paper, we introduce a novel measure of dissimilarity, the mixture Cramer-Wold distance. This measure enables us to capture both marginal and joint distributional information simultaneously, as it incorporates a mixture measure with point masses on standard basis vectors. Building upon the mixture Cramer-Wold distance, we propose a new generative model called CWDAE (Cramer-Wold Distributional AutoEncoder), which shows remarkable performance in generating synthetic data when applied to real tabular datasets. Furthermore, our model offers the flexibility to adjust the level of data privacy with ease.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here