Back to the Basics: Bayesian extensions of IRT outperform neural networks for proficiency estimation

8 Apr 2016  ·  Kevin H. Wilson, Yan Karklin, Bojian Han, Chaitanya Ekanadham ·

Estimating student proficiency is an important task for computer based learning systems. We compare a family of IRT-based proficiency estimation methods to Deep Knowledge Tracing (DKT), a recently proposed recurrent neural network model with promising initial results. We evaluate how well each model predicts a student's future response given previous responses using two publicly available and one proprietary data set. We find that IRT-based methods consistently matched or outperformed DKT across all data sets at the finest level of content granularity that was tractable for them to be trained on. A hierarchical extension of IRT that captured item grouping structure performed best overall. When data sets included non-trivial autocorrelations in student response patterns, a temporal extension of IRT improved performance over standard IRT while the RNN-based method did not. We conclude that IRT-based models provide a simpler, better-performing alternative to existing RNN-based models of student interaction data while also affording more interpretability and guarantees due to their formulation as Bayesian probabilistic models.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here