\b{eta}-Divergence-Based Latent Factorization of Tensors model for QoS prediction

14 Aug 2022  ·  Zemiao Peng, Hao Wu ·

A nonnegative latent factorization of tensors (NLFT) model can well model the temporal pattern hidden in nonnegative quality-of-service (QoS) data for predicting the unobserved ones with high accuracy. However, existing NLFT models' objective function is based on Euclidean distance, which is only a special case of \b{eta}-divergence. Hence, can we build a generalized NLFT model via adopting \b{eta}-divergence to achieve prediction accuracy gain? To tackle this issue, this paper proposes a \b{eta}-divergence-based NLFT model (\b{eta}-NLFT). Its ideas are two-fold 1) building a learning objective with \b{eta}-divergence to achieve higher prediction accuracy, and 2) implementing self-adaptation of hyper-parameters to improve practicability. Empirical studies on two dynamic QoS datasets demonstrate that compared with state-of-the-art models, the proposed \b{eta}-NLFT model achieves the higher prediction accuracy for unobserved QoS data.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here