AZ-whiteness test: a test for uncorrelated noise on spatio-temporal graphs

23 Apr 2022  ·  Daniele Zambon, Cesare Alippi ·

We present the first whiteness test for graphs, i.e., a whiteness test for multivariate time series associated with the nodes of a dynamic graph. The statistical test aims at finding serial dependencies among close-in-time observations, as well as spatial dependencies among neighboring observations given the underlying graph. The proposed test is a spatio-temporal extension of traditional tests from the system identification literature and finds applications in similar, yet more general, application scenarios involving graph signals. The AZ-test is versatile, allowing the underlying graph to be dynamic, changing in topology and set of nodes, and weighted, thus accounting for connections of different strength, as is the case in many application scenarios like transportation networks and sensor grids. The asymptotic distribution -- as the number of graph edges or temporal observations increases -- is known, and does not assume identically distributed data. We validate the practical value of the test on both synthetic and real-world problems, and show how the test can be employed to assess the quality of spatio-temporal forecasting models by analyzing the prediction residuals appended to the graphs stream.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here