Autonomous Control of a Line Follower Robot Using a Q-Learning Controller

23 Jan 2020  ·  Sepehr Saadatmand, Sima Azizi, Mohammadamir Kavousi, Donald Wunsch ·

In this paper, a MIMO simulated annealing SA based Q learning method is proposed to control a line follower robot. The conventional controller for these types of robots is the proportional P controller. Considering the unknown mechanical characteristics of the robot and uncertainties such as friction and slippery surfaces, system modeling and controller designing can be extremely challenging. The mathematical modeling for the robot is presented in this paper, and a simulator is designed based on this model. The basic Q learning methods are based pure exploitation and the epsilon-greedy methods, which help exploration, can harm the controller performance after learning completion by exploring nonoptimal actions. The simulated annealing based Q learning method tackles this drawback by decreasing the exploration rate when the learning increases. The simulation and experimental results are provided to evaluate the effectiveness of the proposed controller.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here