Automatic Variational ABC

28 Jun 2016  ·  Alexander Moreno, Tameem Adel, Edward Meeds, James M. Rehg, Max Welling ·

Approximate Bayesian Computation (ABC) is a framework for performing likelihood-free posterior inference for simulation models. Stochastic Variational inference (SVI) is an appealing alternative to the inefficient sampling approaches commonly used in ABC. However, SVI is highly sensitive to the variance of the gradient estimators, and this problem is exacerbated by approximating the likelihood. We draw upon recent advances in variance reduction for SV and likelihood-free inference using deterministic simulations to produce low variance gradient estimators of the variational lower-bound. By then exploiting automatic differentiation libraries we can avoid nearly all model-specific derivations. We demonstrate performance on three problems and compare to existing SVI algorithms. Our results demonstrate the correctness and efficiency of our algorithm.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here