Automated vehicle's behavior decision making using deep reinforcement learning and high-fidelity simulation environment

17 Apr 2018  ·  Yingjun Ye, Xiaohui Zhang, Jian Sun ·

Automated vehicles are deemed to be the key element for the intelligent transportation system in the future. Many studies have been made to improve the Automated vehicles' ability of environment recognition and vehicle control, while the attention paid to decision making is not enough though the decision algorithms so far are very preliminary. Therefore, a framework of the decision-making training and learning is put forward in this paper. It consists of two parts: the deep reinforcement learning training program and the high-fidelity virtual simulation environment. Then the basic microscopic behavior, car-following, is trained within this framework. In addition, theoretical analysis and experiments were conducted on setting reward function for accelerating training using deep reinforcement learning. The results show that on the premise of driving comfort, the efficiency of the trained Automated vehicle increases 7.9% compared to the classical traffic model, intelligent driver model. Later on, on a more complex three-lane section, we trained the integrated model combines both car-following and lane-changing behavior, the average speed further grows 2.4%. It indicates that our framework is effective for Automated vehicle's decision-making learning.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods