Automated flow for compressing convolution neural networks for efficient edge-computation with FPGA

Deep convolutional neural networks (CNN) based solutions are the current state- of-the-art for computer vision tasks. Due to the large size of these models, they are typically run on clusters of CPUs or GPUs... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
Average Pooling
Pooling Operations
Global Average Pooling
Pooling Operations
1x1 Convolution
Convolutions
Batch Normalization
Normalization
Max Pooling
Pooling Operations
Softmax
Output Functions
Convolution
Convolutions
Darknet-19
Convolutional Neural Networks
YOLOv2
Object Detection Models