Automated Evaluation of Personalized Text Generation using Large Language Models

17 Oct 2023  ·  Yaqing Wang, Jiepu Jiang, Mingyang Zhang, Cheng Li, Yi Liang, Qiaozhu Mei, Michael Bendersky ·

Personalized text generation presents a specialized mechanism for delivering content that is specific to a user's personal context. While the research progress in this area has been rapid, evaluation still presents a challenge. Traditional automated metrics such as BLEU and ROUGE primarily measure lexical similarity to human-written references, and are not able to distinguish personalization from other subtle semantic aspects, thus falling short of capturing the nuances of personalized generated content quality. On the other hand, human judgments are costly to obtain, especially in the realm of personalized evaluation. Inspired by these challenges, we explore the use of large language models (LLMs) for evaluating personalized text generation, and examine their ability to understand nuanced user context. We present AuPEL, a novel evaluation method that distills three major semantic aspects of the generated text: personalization, quality and relevance, and automatically measures these aspects. To validate the effectiveness of AuPEL, we design carefully controlled experiments and compare the accuracy of the evaluation judgments made by LLMs versus that of judgements made by human annotators, and conduct rigorous analyses of the consistency and sensitivity of the proposed metric. We find that, compared to existing evaluation metrics, AuPEL not only distinguishes and ranks models based on their personalization abilities more accurately, but also presents commendable consistency and efficiency for this task. Our work suggests that using LLMs as the evaluators of personalized text generation is superior to traditional text similarity metrics, even though interesting new challenges still remain.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here