Asynchronous Bidirectional Decoding for Neural Machine Translation

16 Jan 2018  ·  Xiangwen Zhang, Jinsong Su, Yue Qin, Yang Liu, Rongrong Ji, Hongji Wang ·

The dominant neural machine translation (NMT) models apply unified attentional encoder-decoder neural networks for translation. Traditionally, the NMT decoders adopt recurrent neural networks (RNNs) to perform translation in a left-toright manner, leaving the target-side contexts generated from right to left unexploited during translation. In this paper, we equip the conventional attentional encoder-decoder NMT framework with a backward decoder, in order to explore bidirectional decoding for NMT. Attending to the hidden state sequence produced by the encoder, our backward decoder first learns to generate the target-side hidden state sequence from right to left. Then, the forward decoder performs translation in the forward direction, while in each translation prediction timestep, it simultaneously applies two attention models to consider the source-side and reverse target-side hidden states, respectively. With this new architecture, our model is able to fully exploit source- and target-side contexts to improve translation quality altogether. Experimental results on NIST Chinese-English and WMT English-German translation tasks demonstrate that our model achieves substantial improvements over the conventional NMT by 3.14 and 1.38 BLEU points, respectively. The source code of this work can be obtained from https://github.com/DeepLearnXMU/ABDNMT.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here