Arhuaco: Deep Learning and Isolation Based Security for Distributed High-Throughput Computing

Grid computing systems require innovative methods and tools to identify cybersecurity incidents and perform autonomous actions i.e. without administrator intervention. They also require methods to isolate and trace job payload activity in order to protect users and find evidence of malicious behavior. We introduce an integrated approach of security monitoring via Security by Isolation with Linux Containers and Deep Learning methods for the analysis of real time data in Grid jobs running inside virtualized High-Throughput Computing infrastructure in order to detect and prevent intrusions. A dataset for malware detection in Grid computing is described. We show in addition the utilization of generative methods with Recurrent Neural Networks to improve the collected dataset. We present Arhuaco, a prototype implementation of the proposed methods. We empirically study the performance of our technique. The results show that Arhuaco outperforms other methods used in Intrusion Detection Systems for Grid Computing. The study is carried out in the ALICE Collaboration Grid, part of the Worldwide LHC Computing Grid.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here