Area-wide traffic signal control based on a deep graph Q-Network (DGQN) trained in an asynchronous manner

5 Aug 2020  ·  Gyeongjun Kim, Keemin Sohn ·

Reinforcement learning (RL) algorithms have been widely applied in traffic signal studies. There are, however, several problems in jointly controlling traffic lights for a large transportation network. First, the action space exponentially explodes as the number of intersections to be jointly controlled increases. Although a multi-agent RL algorithm has been used to solve the curse of dimensionality, this neither guaranteed a global optimum, nor could it break the ties between joint actions. The problem was circumvented by revising the output structure of a deep Q-network (DQN) within the framework of a single-agent RL algorithm. Second, when mapping traffic states into an action value, it is difficult to consider spatio-temporal correlations over a large transportation network. A deep graph Q-network (DGQN) was devised to efficiently accommodate spatio-temporal dependencies on a large scale. Finally, training a RL model to jointly control traffic lights in a large transportation network requires much time to converge. An asynchronous update methodology was devised for a DGQN to quickly reach an optimal policy. Using these three remedies, a DGQN succeeded in jointly controlling the traffic lights in a large transportation network in Seoul. This approach outperformed other state-of-the-art RL algorithms as well as an actual fixed-signal operation.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here