Approximation Algorithms for Fair Range Clustering

11 Jun 2023  ·  Sèdjro S. Hotegni, Sepideh Mahabadi, Ali Vakilian ·

This paper studies the fair range clustering problem in which the data points are from different demographic groups and the goal is to pick $k$ centers with the minimum clustering cost such that each group is at least minimally represented in the centers set and no group dominates the centers set. More precisely, given a set of $n$ points in a metric space $(P,d)$ where each point belongs to one of the $\ell$ different demographics (i.e., $P = P_1 \uplus P_2 \uplus \cdots \uplus P_\ell$) and a set of $\ell$ intervals $[\alpha_1, \beta_1], \cdots, [\alpha_\ell, \beta_\ell]$ on desired number of centers from each group, the goal is to pick a set of $k$ centers $C$ with minimum $\ell_p$-clustering cost (i.e., $(\sum_{v\in P} d(v,C)^p)^{1/p}$) such that for each group $i\in \ell$, $|C\cap P_i| \in [\alpha_i, \beta_i]$. In particular, the fair range $\ell_p$-clustering captures fair range $k$-center, $k$-median and $k$-means as its special cases. In this work, we provide efficient constant factor approximation algorithms for fair range $\ell_p$-clustering for all values of $p\in [1,\infty)$.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here