Approximating smooth functions by deep neural networks with sigmoid activation function

8 Oct 2020 Sophie Langer

We study the power of deep neural networks (DNNs) with sigmoid activation function. Recently, it was shown that DNNs approximate any $d$-dimensional, smooth function on a compact set with a rate of order $W^{-p/d}$, where $W$ is the number of nonzero weights in the network and $p$ is the smoothness of the function... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper