Approximate Neural Architecture Search via Operation Distribution Learning

8 Nov 2021  ·  Xingchen Wan, Binxin Ru, Pedro M. Esperança, Fabio M. Carlucci ·

The standard paradigm in Neural Architecture Search (NAS) is to search for a fully deterministic architecture with specific operations and connections. In this work, we instead propose to search for the optimal operation distribution, thus providing a stochastic and approximate solution, which can be used to sample architectures of arbitrary length. We propose and show, that given an architectural cell, its performance largely depends on the ratio of used operations, rather than any specific connection pattern in typical search spaces; that is, small changes in the ordering of the operations are often irrelevant. This intuition is orthogonal to any specific search strategy and can be applied to a diverse set of NAS algorithms. Through extensive validation on 4 data-sets and 4 NAS techniques (Bayesian optimisation, differentiable search, local search and random search), we show that the operation distribution (1) holds enough discriminating power to reliably identify a solution and (2) is significantly easier to optimise than traditional encodings, leading to large speed-ups at little to no cost in performance. Indeed, this simple intuition significantly reduces the cost of current approaches and potentially enable NAS to be used in a broader range of applications.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here