Applying Generative Adversarial Networks to Intelligent Subsurface Imaging and Identification

30 May 2019  ·  William Rice ·

To augment training data for machine learning models in Ground Penetrating Radar (GPR) data classification and identification, this thesis focuses on the generation of realistic GPR data using Generative Adversarial Networks. An innovative GAN architecture is proposed for generating GPR B-scans, which is, to the author's knowledge, the first successful application of GAN to GPR B-scans. As one of the major contributions, a novel loss function is formulated by merging frequency domain with time domain features. To test the efficacy of generated B-scans, a real time object classifier is proposed to measure the performance gain derived from augmented B-Scan images. The numerical experiment illustrated that, based on the augmented training data, the proposed GAN architecture demonstrated a significant increase (from 82% to 98%) in the accuracy of the object classifier.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods