Anomaly Detection Based on Unsupervised Disentangled Representation Learning in Combination with Manifold Learning

25 Sep 2019  ·  Xiaoyan Li, Iluju Kiringa, Tet Yeap, Xiaodan Zhu, Yifeng Li ·

Identifying anomalous samples from highly complex and unstructured data is a crucial but challenging task in a variety of intelligent systems. In this paper, we present a novel deep anomaly detection framework named AnoDM (standing for Anomaly detection based on unsupervised Disentangled representation learning and Manifold learning). The disentanglement learning is currently implemented by beta-VAE for automatically discovering interpretable factorized latent representations in a completely unsupervised manner. The manifold learning is realized by t-SNE for projecting the latent representations to a 2D map. We define a new anomaly score function by combining beta-VAE's reconstruction error in the raw feature space and local density estimation in the t-SNE space. AnoDM was evaluated on both image and time-series data and achieved better results than models that use just one of the two measures and other deep learning methods.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here