Angle of Arrival and Centimeter Distance Estimation on a Smart UWB Sensor Node

Accurate and low-power indoor localization is becoming more and more of a necessity to empower novel consumer and industrial applications. In this field, the most promising technology is based on UWB modulation; however, current UWB positioning systems do not reach centimeter accuracy in general deployments due to multipath and nonisotropic antennas, still necessitating several fixed anchors to estimate an object's position in space. This article presents an in-depth study and assessment of angle of arrival (AoA) UWB measurements using a compact, low-power solution integrating a novel commercial module with phase difference of arrival (PDoA) estimation as integrated feature. Results demonstrate the possibility of reaching centimeter distance precision and ang 2.4 average angular accuracy in many operative conditions, e.g., in a ang 90 range around the center. Moreover, integrating the channel impulse response, the phase differential of arrival, and the point-to-point distance, an error correction model is discussed to compensate for reflections, multipaths, and front-back ambiguity.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here