G-PECNet: Towards a Generalizable Pedestrian Trajectory Prediction System

15 Oct 2022  ·  Aryan Garg, Renu M. Rameshan ·

Navigating dynamic physical environments without obstructing or damaging human assets is of quintessential importance for social robots. In this work, we solve autonomous drone navigation's sub-problem of predicting out-of-domain human and agent trajectories using a deep generative model. Our method: General-PECNet or G-PECNet observes an improvement of 9.5\% on the Final Displacement Error (FDE) on 2020's benchmark: PECNet through a combination of architectural improvements inspired by periodic activation functions and synthetic trajectory (data) augmentations using Hidden Markov Models (HMMs) and Reinforcement Learning (RL). Additionally, we propose a simple geometry-inspired metric for trajectory non-linearity and outlier detection, helpful for the task. Code available at https://github.com/Aryan-Garg/PECNet-Pedestrian-Trajectory-Prediction.git

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here