Analysis on DeepLabV3+ Performance for Automatic Steel Defects Detection

9 Apr 2020 Zheng Nie Jiachen Xu Shengchang Zhang

Our works experimented DeepLabV3+ with different backbones on a large volume of steel images aiming to automatically detect different types of steel defects. Our methods applied random weighted augmentation to balance different defects types in the training set... (read more)

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper