An operator view of policy gradient methods

We cast policy gradient methods as the repeated application of two operators: a policy improvement operator $\mathcal{I}$, which maps any policy $\pi$ to a better one $\mathcal{I}\pi$, and a projection operator $\mathcal{P}$, which finds the best approximation of $\mathcal{I}\pi$ in the set of realizable policies. We use this framework to introduce operator-based versions of traditional policy gradient methods such as REINFORCE and PPO, which leads to a better understanding of their original counterparts. We also use the understanding we develop of the role of $\mathcal{I}$ and $\mathcal{P}$ to propose a new global lower bound of the expected return. This new perspective allows us to further bridge the gap between policy-based and value-based methods, showing how REINFORCE and the Bellman optimality operator, for example, can be seen as two sides of the same coin.

PDF Abstract NeurIPS 2020 PDF NeurIPS 2020 Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods