Online Learning Models for Vehicle Usage Prediction During COVID-19

Today, there is an ongoing transition to more sustainable transportation, for which an essential part is the switch from combustion engine vehicles to battery electric vehicles (BEVs). BEVs have many advantages from a sustainability perspective, but issues such as limited driving range and long recharge times slow down the transition from combustion engines. One way to mitigate these issues is by performing battery thermal preconditioning, which increases the energy efficiency of the battery. However, to optimally perform battery thermal preconditioning, the vehicle usage pattern needs to be known, i.e., how and when the vehicle will be used. This study attempts to predict the departure time and distance of the first drive each day using online machine learning models. The online machine learning models are trained and evaluated on historical driving data collected from a fleet of BEVs during the COVID-19 pandemic. Additionally, the prediction models are extended to quantify the uncertainty of their predictions, which can be used to decide whether the prediction should be used or dismissed. Based on our results, the best-performing prediction models yield an aggregated mean absolute error of 2.75 hours when predicting departure time and 13.37 km when predicting trip distance.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here