An Online Evolving Framework for Modeling the Safe Autonomous Vehicle Control System via Online Recognition of Latent Risks

28 Aug 2019  ·  Teawon Han, Dimitar Filev, Umit Ozguner ·

An online evolving framework is proposed to support modeling the safe Automated Vehicle (AV) control system by making the controller able to recognize unexpected situations and react appropriately by choosing a better action. Within the framework, the evolving Finite State Machine (e-FSM), which is an online model able to (1) determine states uniquely as needed, (2) recognize states, and (3) identify state-transitions, is introduced. In this study, the e-FSM's capabilities are explained and illustrated by simulating a simple car-following scenario. As a vehicle controller, the Intelligent Driver Model (IDM) is implemented, and different sets of IDM parameters are assigned to the following vehicle for simulating various situations (including the collision). While simulating the car-following scenario, e-FSM recognizes and determines the states and identifies the transition matrices by suggested methods. To verify if e-FSM can recognize and determine states uniquely, we analyze whether the same state is recognized under the identical situation. The difference between probability distributions of predicted and recognized states is measured by the Jensen-Shannon divergence (JSD) method to validate the accuracy of identified transition-matrices. As shown in the results, the Dead-End state which has latent-risk of the collision is uniquely determined and consistently recognized. Also, the probability distributions of the predicted state are significantly similar to the recognized state, declaring that the state-transitions are precisely identified.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here