An Observational Test of Solar Plasma Heating by Magnetic Flux Cancellation

16 May 2020  ·  Sung-Hong Park ·

Recent observations suggest that magnetic flux cancellation may play a crucial role in heating the Sun's upper atmosphere (chromosphere, transition region, corona). Here, we intended to validate an analytic model for magnetic reconnection and consequent coronal heating, driven by a pair of converging and cancelling magnetic flux sources of opposite polarities. For this test, we analyzed photospheric magnetic field and multi-wavelength UV/EUV observations of a small-scale flux cancellation event in a quiet-Sun internetwork region over a target interval of 5.2 hr. The observed cancellation event exhibits a converging motion of two opposite-polarity magnetic patches on the photosphere and red-shifted Doppler velocities (downflows) therein consistently over the target interval, with a decrease in magnetic flux of both polarities at a rate of 10$^{15}$ Mx s$^{-1}$. Several impulsive EUV brightenings, with differential emission measure values peaked at 1.6-2.0 MK, are also observed in the shape of arcades with their two footpoints anchored in the two patches. The rate of magnetic energy released as heat at the flux cancellation region is estimated to be in the range of (0.2-1)$\times$10$^{24}$ erg s$^{-1}$ over the target interval, which can satisfy the requirement of previously reported heating rates for the quiet-Sun corona. Finally, both short-term (a few to several tens of minutes) variations and long-term (a few hours) trends in the magnetic energy release rate are clearly shown in the estimated rate of radiative energy loss of electrons at temperatures above 2.0 MK. All these observational findings support the validity of the investigated reconnection model for plasma heating in the upper solar atmosphere by flux cancellation.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Solar and Stellar Astrophysics Space Physics