An Inverse Power Method for Nonlinear Eigenproblems with Applications in 1-Spectral Clustering and Sparse PCA

NeurIPS 2010  ·  Matthias Hein, Thomas Bühler ·

Many problems in machine learning and statistics can be formulated as (generalized) eigenproblems. In terms of the associated optimization problem, computing linear eigenvectors amounts to finding critical points of a quadratic function subject to quadratic constraints. In this paper we show that a certain class of constrained optimization problems with nonquadratic objective and constraints can be understood as nonlinear eigenproblems. We derive a generalization of the inverse power method which is guaranteed to converge to a nonlinear eigenvector. We apply the inverse power method to 1-spectral clustering and sparse PCA which can naturally be formulated as nonlinear eigenproblems. In both applications we achieve state-of-the-art results in terms of solution quality and runtime. Moving beyond the standard eigenproblem should be useful also in many other applications and our inverse power method can be easily adapted to new problems.

PDF Abstract NeurIPS 2010 PDF NeurIPS 2010 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods