An Introduction to Robust Graph Convolutional Networks

27 Mar 2021  ·  Mehrnaz Najafi, Philip S. Yu ·

Graph convolutional neural networks (GCNs) generalize tradition convolutional neural networks (CNNs) from low-dimensional regular graphs (e.g., image) to high dimensional irregular graphs (e.g., text documents on word embeddings). Due to inevitable faulty data collection instruments, deceptive data manipulation, or other system errors, the data might be error-contaminated. Even a small amount of error such as noise can compromise the ability of GCNs and render them inadmissible to a large extent. The key challenge is how to effectively and efficiently employ GCNs in the presence of erroneous data. In this paper, we propose a novel Robust Graph Convolutional Neural Networks for possible erroneous single-view or multi-view data where data may come from multiple sources. By incorporating an extra layers via Autoencoders into traditional graph convolutional networks, we characterize and handle typical error models explicitly. Experimental results on various real-world datasets demonstrate the superiority of the proposed model over the baseline methods and its robustness against different types of error.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here