An Interpretable Generalization Mechanism for Accurately Detecting Anomaly and Identifying Networking Intrusion Techniques

12 Mar 2024  ·  Hao-Ting Pai, Yu-Hsuan Kang, Wen-Cheng Chung ·

Recent advancements in Intrusion Detection Systems (IDS), integrating Explainable AI (XAI) methodologies, have led to notable improvements in system performance via precise feature selection. However, a thorough understanding of cyber-attacks requires inherently explainable decision-making processes within IDS. In this paper, we present the Interpretable Generalization Mechanism (IG), poised to revolutionize IDS capabilities. IG discerns coherent patterns, making it interpretable in distinguishing between normal and anomalous network traffic. Further, the synthesis of coherent patterns sheds light on intricate intrusion pathways, providing essential insights for cybersecurity forensics. By experiments with real-world datasets NSL-KDD, UNSW-NB15, and UKM-IDS20, IG is accurate even at a low ratio of training-to-test. With 10%-to-90%, IG achieves Precision (PRE)=0.93, Recall (REC)=0.94, and Area Under Curve (AUC)=0.94 in NSL-KDD; PRE=0.98, REC=0.99, and AUC=0.99 in UNSW-NB15; and PRE=0.98, REC=0.98, and AUC=0.99 in UKM-IDS20. Notably, in UNSW-NB15, IG achieves REC=1.0 and at least PRE=0.98 since 40%-to-60%; in UKM-IDS20, IG achieves REC=1.0 and at least PRE=0.88 since 20%-to-80%. Importantly, in UKM-IDS20, IG successfully identifies all three anomalous instances without prior exposure, demonstrating its generalization capabilities. These results and inferences are reproducible. In sum, IG showcases superior generalization by consistently performing well across diverse datasets and training-to-test ratios (from 10%-to-90% to 90%-to-10%), and excels in identifying novel anomalies without prior exposure. Its interpretability is enhanced by coherent evidence that accurately distinguishes both normal and anomalous activities, significantly improving detection accuracy and reducing false alarms, thereby strengthening IDS reliability and trustworthiness.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here