Integrated Generalized Zero-Shot Learning for Fine-Grained Classification

31 Dec 2020  ·  Tasfia Shermin, Shyh Wei Teng, Ferdous Sohel, Manzur Murshed, Guojun Lu ·

Embedding learning (EL) and feature synthesizing (FS) are two of the popular categories of fine-grained GZSL methods. EL or FS using global features cannot discriminate fine details in the absence of local features. On the other hand, EL or FS methods exploiting local features either neglect direct attribute guidance or global information. Consequently, neither method performs well. In this paper, we propose to explore global and direct attribute-supervised local visual features for both EL and FS categories in an integrated manner for fine-grained GZSL. The proposed integrated network has an EL sub-network and a FS sub-network. Consequently, the proposed integrated network can be tested in two ways. We propose a novel two-step dense attention mechanism to discover attribute-guided local visual features. We introduce new mutual learning between the sub-networks to exploit mutually beneficial information for optimization. Moreover, we propose to compute source-target class similarity based on mutual information and transfer-learn the target classes to reduce bias towards the source domain during testing. We demonstrate that our proposed method outperforms contemporary methods on benchmark datasets.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here