Information-Theoretic Abstractions for Planning in Agents with Computational Constraints

19 May 2020  ·  Daniel T. Larsson, Dipankar Maity, Panagiotis Tsiotras ·

In this paper, we develop a framework for path-planning on abstractions that are not provided to the agent a priori but instead emerge as a function of the available computational resources. We show how a path-planning problem in an environment can be systematically approximated by solving a sequence of easier to solve problems on abstractions of the original space. The properties of the problem are analyzed, and a number of theoretical results are presented and discussed. A numerical example is presented to show the utility of the approach and to corroborate the theoretical findings. We conclude by providing a discussion detailing the connections of the proposed approach to anytime algorithms and bounded rationality.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here