An Extended Frank-Wolfe Method with "In-Face" Directions, and its Application to Low-Rank Matrix Completion

6 Nov 2015  ·  Robert M. Freund, Paul Grigas, Rahul Mazumder ·

Motivated principally by the low-rank matrix completion problem, we present an extension of the Frank-Wolfe method that is designed to induce near-optimal solutions on low-dimensional faces of the feasible region. This is accomplished by a new approach to generating ``in-face" directions at each iteration, as well as through new choice rules for selecting between in-face and ``regular" Frank-Wolfe steps. Our framework for generating in-face directions generalizes the notion of away-steps introduced by Wolfe. In particular, the in-face directions always keep the next iterate within the minimal face containing the current iterate. We present computational guarantees for the new method that trade off efficiency in computing near-optimal solutions with upper bounds on the dimension of minimal faces of iterates. We apply the new method to the matrix completion problem, where low-dimensional faces correspond to low-rank matrices. We present computational results that demonstrate the effectiveness of our methodological approach at producing nearly-optimal solutions of very low rank. On both artificial and real datasets, we demonstrate significant speed-ups in computing very low-rank nearly-optimal solutions as compared to either the Frank-Wolfe method or its traditional away-step variant.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here