An Evolutionary Forest for Regression

Random forest (RF) is a type of ensemble-based machine learning method that has been applied to a variety of machine learning tasks in recent years. This article proposes an evolutionary approach to generate an oblique RF for regression problems. More specifically, our method induces an oblique RF by transforming the original feature space to a new feature space through the evolutionary feature construction method. To speed up the searching process, the proposed method evaluates each set of features based on a decision tree (DT) rather than an RF. In order to obtain an RF, we archive top-performing features and corresponding trees during the search. In this way, both the features and the forest can be constructed simultaneously in a single run. The proposed evolutionary forest is applied to 117 benchmark problems with different characteristics and compared with some state-of-the-art regression methods, including several variants of the RF and gradient boosted DTs (GBDTs). The experimental results suggest that the proposed method outperforms the existing RF and GBDT methods.

PDF

Datasets


  Add Datasets introduced or used in this paper
Task Dataset Model Metric Name Metric Value Global Rank Benchmark
Penn Machine Learning Benchmark Real-world Datasets Evolutionary Forest R2 Score 0.7045 # 2

Methods


No methods listed for this paper. Add relevant methods here