An effective self-supervised framework for learning expressive molecular global representations to drug discovery

How to produce expressive molecular representations is a fundamental challenge in artificial intelligence-driven drug discovery. Graph neural network (GNN) has emerged as a powerful technique for modeling molecular data. However, previous supervised approaches usually suffer from the scarcity of labeled data and poor generalization capability. Here, we propose a novel molecular pre-training graph-based deep learning framework, named MPG, that learns molecular representations from large-scale unlabeled molecules. In MPG, we proposed a powerful GNN for modelling molecular graph named MolGNet, and designed an effective self-supervised strategy for pre-training the model at both the node and graph-level. After pre-training on 11 million unlabeled molecules, we revealed that MolGNet can capture valuable chemical insights to produce interpretable representation. The pre-trained MolGNet can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of drug discovery tasks, including molecular properties prediction, drug-drug interaction and drug-target interaction, on 14 benchmark datasets. The pre-trained MolGNet in MPG has the potential to become an advanced molecular encoder in the drug discovery pipeline.

PDF

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods